Molecular Outflows from Young Stellar Objects
نویسندگان
چکیده
We review some aspects of the bipolar molecular outflow phenomenon. In particular, we compare the morphological properties, energetics and velocity structures of outflows from high and low-mass protostars and investigate to what extent a common source model can explain outflows from sources of very different luminosities. Many flow properties, in particular the CO spatial and velocity structure, are broadly similar across the entire luminosity range, although the evidence for jet-entrainment is still less clear cut in massive flows than in low-mass systems. We use the correlation of flow momentum deposition rate with source luminosity to estimate the ratio f of mass ejection to mass accretion rate. From this analysis, it appears that a common driving mechanism could operate across the entire luminosity range. However, we stress that for the high-mass YSOs, the detailed physics of this mechanism and how the ejected wind/jet entrains ambient material remain to be addressed. We also briefly consider the alternative possibility that high-mass outflows can be explained by the recently proposed circulation models, and discuss several shortcomings of those models. Finally, we survey the current evidence on the nature of the shocks driven by YSOs during their pre-main-sequence evolution.
منابع مشابه
Precessing Jets and Molecular Outflows: A 3-D Numerical Study
– 2 – We present 3-D numerical hydrodynamical simulations of precessing supersonic heavy jets to explore their evolution, how they differ from straight jets and how well they serve as a model for generating molecular outflows from Young Stellar Objects. The dynamics are studied with a number of high resolution simulations on a Cartesian grid (128x128x128 zones) using a high order finite differe...
متن کاملTurbulence Driven by Outflow - Blown Cavities in the Molecular Cloud of Ngc 1333
Outflows from young stellar objects have been identified as a possible source of turbulence in molecular clouds. To investigate the relationship between outflows, cloud dynamics and turbulence, we compare the kinematics of the molecular gas associated with NGC 1333, traced in CO(1-0), with the distribution of young stellar objects (YSOs) within. We find a velocity dispersion of ∼ 1− 1.6km/s in ...
متن کاملYSO Jets and Molecular Outflows: Tracing the History of Star Formation
Collimated outflows from Young Stellar Objects (YSOs) can be seen as tracers of the accretion powered systems which drive them. In this paper I review some theoretical and observational aspects of YSO outflows through the prism of questions relating to the protostellar source. The issue I address is: can collimated outflows be used as “fossils” allowing the history of protostellar evolution to ...
متن کاملYSO jets in the Galactic Plane from UWISH2: I - MHO catalogue for Serpens and Aquila
Jets and outflows from Young Stellar Objects (YSOs) are important signposts of currently ongoing star formation. In order to study these objects we are conducting an unbiased survey along the Galactic Plane in the 1-0 S(1) emission line of molecular hydrogen at 2.122μm using the UK Infrared Telescope. In this paper we are focusing on a 33 square degree sized region in Serpens and Aquila (18<l <...
متن کاملEvolution and Fragmentation of Wide-AngleWind Driven Molecular Outflows
We present two dimensional cylindrically symmetric hydrodynamic simulations and synthetic emission maps of a stellar wind propagating into an infalling, rotating environment. The resulting outflow morphology, collimation and stability observed in these simulations have relevance to the study of young stellar objects, Herbig-Haro jets and molecular outflows. Our code follows hydrogen gas with mo...
متن کاملA Global Jet/Circulation Model for Young Stars
Powerful, highly collimated jets, surrounded by bipolar molecular outflows, are commonly observed near Young Stellar Objects (YSOs). In the usual theoretical picture of star formation, a jet is ejected from a magnetized accretion disk, with a molecular outflow being driven either by the jet or by a wider wind coming from the disk. Here, we propose an alternative global model for the flows surro...
متن کامل